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Stopping power of ions in a magnetized two-temperature plasma

H. B. Nersisyan,* M. Walter, and G. Zwicknagel
Institut für Theoretische Physik II, Universita¨t Erlangen, D-91058 Erlangen, Germany

~Received 10 December 1999!

Using the dielectric theory for a weakly coupled plasma, we investigate the stopping power of an ion in an
anisotropic two-temperature electron plasma in the presence of a magnetic field. The analysis is based on the
assumption that the energy variation of the ion is much less than its kinetic energy. A general expression for
the stopping power is analyzed for weak and strong magnetic fields~i.e., for the electron cyclotron frequency
less than and greater than the plasma frequency!, and for low and high ion velocities. It is found that the
usually velocity independent friction coefficient contains an anomalous term which diverges logarithmically as
the projectile velocity approaches zero. The physical origin of this anomalous term is the coupling between the
cyclotron motion of the electrons and the long-wavelength, low-frequency fluctuations produced by the pro-
jectile ion.

PACS number~s!: 52.40.Mj, 34.50.Bw, 52.35.2g
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I. INTRODUCTION

The energy loss of ions in a plasma has been a topi
great interest due to its importance for the study of ba
interactions of charged particles in real media. Recent ap
cations are electron cooling of heavy ion beams@1–3# and
energy transfer for inertial confinement fusion~ICF! ~see@4#
for an overview!. Electron cooling is realized by mixing th
ion beam periodically with a cold electron beam of the sa
average velocity. The interaction length is normally abou
few meters, and the electron beam is guided by a magn
field parallel to its direction of motion. The cooling of th
ion beam may then be viewed as an energy loss in the c
mon rest frame of both beams. Similar questions arise
heavy-ion-induced ICF. There a frozen hydrogen pelle
heated and compressed by stopping of ion beams in the
rounding converter. In this case the electrons of the s
state converter are acting like a plasma and absorb the
coming energy.

In the electron cooling process the velocity distribution
the electron beam is highly anisotropic because of the ac
eration from the cathode to the cooling section. It can
described by a Maxwell distribution with two different tem
peratures, a longitudinalTi and a transverseT' @1–3#. Fur-
thermore, an external, longitudinal magnetic field is nee
to guide the electrons from the cathode to and through
electron cooler and to stabilize the anisotropic velocity d
tribution by suppressing the transverse-longitudinal rel
ation.

In the present paper we are interested in the influence
the magnetic field and the temperature anisotropy on the
beam stopping power. Since the early 1960s several the
ical calculations of the stopping power in a magnetiz
plasma have been presented@5–14#. Stopping of a fast tes
particle moving with velocityV much higher than the elec
tron thermal velocityv th was studied in Refs.@5, 6, 8#. The
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energy loss of a charged particle moving with arbitrary v
locity was studied in Ref.@7#. The expression obtained ther
for the Coulomb logarithm,L5 ln(lD /r') ~wherelD is the
Debye length andr' is the impact parameter for scatterin
for an angleq5p/2!, corresponds to the classical descri
tion of collisions. In the quantum-mechanical case, the C
lomb logarithm isL5 ln(lD /lB), wherelB is the de Broglie
wavelength of the plasma electrons@15#.

In Ref. @10#, expressions were derived describing t
stopping power of a charged particle in a Maxwellian plas
placed in a classically strong magnetic field (lB!ac!lD ,
where ac is the electron Larmor radius!, under conditions
when scattering must be described quantum mechanic
The calculations were carried out for slow test partic
whose velocities satisfy the conditions (m/mi)

1/3v th,V
!v th , wheremi is the mass of the plasma ions andm is the
electron mass.

In a recent paper@11#, the stopping power in a magnetize
plasma was investigated for high-velocity light particles, ta
ing into account the Larmor rotation of a test projectile in
magnetic field. It was shown that the stopping power c
exhibit an oscillatory dependence on the magnetic field
that it is much greater than without a magnetic field. Mo
attention has been paid to the stopping power in a stron
magnetized plasma for ions that move along the magn
field @11–13#. Both uncorrelated@11,13# and correlated@12#
situations have been discussed. These investigations
concentrated on the stopping power in an isotropic o
temperature plasma. Extensions to nonlinear effects of
stopping and temperature anisotropy have been made
cently by particle-in-cell~PIC! computer simulation@14#,
where the caseTi!T' has been investigated, which is inte
esting for the electron cooling process. Here, in the fram
work of dielectric theory, we will focus on the stoppin
power at arbitrary temperature anisotropyT' /Ti .

The paper is organized as follows. We start in Sec. II
solving the linearized Vlasov-Poisson equations by mean
Fourier transformation. This provides the general form of
linearized potential generated in a magnetized Maxwell
plasma by a projectile ion, from which the stopping power
deduced. In Sec. III, we apply our results to a nonmagneti

f
,
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PRE 61 7023STOPPING OF IONS IN A MAGNETIZED TWO- . . .
plasma. Calculations are carried out for small projectile
locities at arbitrary temperature anisotropy and arbitrary
rection of ion motion with respect to the anisotropy ax
Then we turn to the effect of a weak magnetic field on
stopping power in Sec. IV, while we concentrate on the
fluence of a strong magnetic field in Sec. V. In contrast w
the papers@11,13# we consider ion motion in an arbitrar
direction. As the last issue we investigate in Sec. VI
stopping power for small projectile velocities at arbitra
magnetic field and temperature anisotropy. The friction
efficient there contains an anomalous term which increa
logarithmically when the projectile velocity approaches ze
The results achieved are finally summarized and discusse
Sec. VII.

II. DIELECTRIC THEORY

For the anisotropic plasma with two different tempe
turesTi andT' of the electrons we define an average te
peratureT̄5 1

3 Ti1
2
3 T' . Within dielectric theory, the elec

tron plasma is described as a continuous, polarizable fl
~medium!, which is represented by the phase-space den
of the electronsf (r ,v,t). Here, only a mean-field interactio
between the electrons is considered, and hard collisions
neglected. The evolution of the distribution functionf (r ,v,t)
is determined by the Vlasov-Poisson equation. This is va
for weakly coupled plasmas where the number of electr
in the Debye sphere,ND54pn0l̄D

3 @1, is very large. Here

n0 is the electron density andl̄D5(kBT̄/4pn0e2)1/2 is an
averaged Debye length.

In the following, we consider a nonrelativistic projecti
ion with chargeZe and with a velocityV which moves in a
magnetized anisotropic two-temperature plasma at an a
q with respect to the magnetic fieldB0 . The axis defined by
B0 also coincides with the degree of freedom of temperat
Ti . We assume that the energy variation of the ion is mu
smaller than its kinetic energy. We ignore any role of t
electron spin or magnetic moment due to the nonrelativi
motion of the ion and the plasma electrons. The strength
the coupling between an ion moving with velocityV and the
electron plasma is given by the coupling parameter

Z5
uZu

ND~11V2/ v̄ th
2 !3/2. ~1!

Here v̄ th5(kBT̄/m)1/2 is the average thermal velocity of a
electron. The derivation of Eq.~1! is discussed in detail in
Ref. @16#. The parameterZ characterizes the ion-target co
pling, whereZ!1 corresponds to weak, almost linear co
pling andZ*1 to strong, nonlinear coupling.

For a sufficiently small perturbation (Z!1) the linearized
Vlasov equation of the plasma may be written as

] f 1

]t
1v

] f 1

]r
2vc~v3b!

] f 1

]v
52

e

m

]w

]r

] f 0

]v
, ~2!

where f 5 f 01 f 1 and the self-consistent electrostatic pote
tial w is determined by the Poisson equation
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¹2w524pZed~r2Vt !14peE dv f 1~r ,v,t !. ~3!

b is the unit vector parallel toB0 , 2e andvc5eB0 /mc are
the charge and Larmor frequency of the plasma electro
respectively, andf 0 is the unperturbed distribution functio
of plasma electrons, which is here given by two Maxwellia
for the longitudinal and transverse degrees of freedom,

f 0~v i ,v'!5
n0

~2p!3/2v th'
2 v thi

expS 2
v'

2

2v th'
2 D expS 2

v i
2

2v thi
2 D ,

~4!

where^v i
2&5v thi

2 5kBTi /m and ^v'
2 &52v th'

2 52kBT' /m.
By solving Eqs.~2! and~3! in space-time Fourier compo

nents, we obtain the electrostatic potential

w~r ,t !5
Ze

2p2 E dk
exp@ ik•~r2Vt !#

k2«~k,k•V!
, ~5!

which provides the dynamic response of the plasma to
motion of the projectile ion in the presence of the exter
magnetic field. The dielectric function«(k,v) of a homoge-
neous, magnetized, and anisotropic plasma is given by

«~k,v!511
1

k2lDi
2 @G~s!1 iF ~s!#

511
1

k2lDi
2 F11 is&E

0

`

dt exp@ ist&2X~ t !#

1
kv thi&

vc
sin2 a~12t!E

0

`

dt sinS vct&

kv thi
D

3exp@ ist&2X~ t !#G ~6!

with

X~ t !5t2 cos2 a1k2ac
2 sin2 aF12cosS vct&

kv thi
D G , ~7!

where lDi5v thi /vp , vp is the plasma frequency,s
5v/kv thi , t5T' /Ti , ac5v th' /vc , anda is the angle be-
tween the wave vectork and the magnetic field.

As shown in Appendix A, Eqs.~6! and ~7! are identical
with the Bessel function representation of«(k,v) derived,
e.g., by Ichimaru@17#. Equations~6! and ~7! are, however,
more convenient when studying the weak and strong m
netic field limits in Secs. IV and V.

The stopping powerS of an ion is defined as the energ
loss of the ion in a unit length due to interactions with t
plasma electrons. From Eq.~5! it is straightforward to calcu-
late the electric fieldE52“w, and the stopping force actin
on the ion. Then, the stopping power of the projectile i
becomes



r
t
at
o
b
rl

m

i
es

e
e

er
he

p
on
-

-

-

s

m-

e
out
s.

f.

the
tive
hey
ttle
s at
rge

7024 PRE 61H. B. NERSISYAN, M. WALTER, AND G. ZWICKNAGEL
S52
dE

dl
5Ze

]

]r
w~r ,t !U

r5vt

5
2Z2e2lDi

2

p2 E
0

kmax
k3dkE

0

1

dmE
0

p

3dw
cosQF~s!

@k2lDi
2 1G~s!#21F2~s!

, ~8!

where m5cosa is the angle betweenk and B0 ,Q is the
angle betweenk and V, s5k•V/kv thi5(V/v thi)cosQ,
cosQ5m cosq2A12m2 sinq cosw, andq is the angle be-
tweenV andB0 . In Eq.~8! we introduced a cutoff paramete
kmax51/r min ~where r min is the effective minimum impac
parameter! in order to avoid the logarithmic divergence
large k. This divergence corresponds to the incapability
the linearized Vlasov theory to treat close encounters
tween the projectile ion and the plasma electrons prope
For r min we thus use the effective minimum impact para
eter of classical binary Coulomb collisionsr min5Ze2/mvr

2 for
relative velocitiesv r.(V21 v̄ th

2 )1/2, which is often called the
‘‘distance of closest approach.’’ Hence

kmax5
1

r min
5

m~V21 v̄ th
2 !

Ze2 . ~9!

A two-temperature description of an electron plasma
valid only when the ion beam–plasma interaction time is l
than the relaxation time between the two temperaturesTi and
T' . For an estimate we will briefly consider the field-fre
case, because the external magnetic field suppresses th
laxation between the transverse and longitudinal temp
tures during the time of flight of the ion beam through t
plasma.

The problem of a temperature relaxation in an anisotro
plasma with and without an external magnetic field was c
sidered by Ichimaru@17#. Within the dominant-term approxi
mation, the relaxation timeDt rel for the plasma without
magnetic field is given by

1

Dr rel
5 8

15Ap/m
n0e4

~kBTeff!
3/2 ln Lc , ~10!

where lnLc5ln(ND) is the Coulomb logarithm and the effec
tive electron temperatureTeff is defined through

1

Teff
3/2

5 15
2 E

0

1 m2~12m2!dm

@m2Ti1~12m2!T'#3/2

5
5)

12T̄3/2

~112t!3/2

~t21!2 F t12

Aut21u
p0~t!23G , ~11!

p0~t!5H ln
11A12t

At
, t,1

arctanAt21, t.1.

~12!

The relaxation times calculated from Eq.~11! are of the
order of 1026, 0.531025, and 1023 s for averaged tempera
f
e-
y.
-

s
s

re-
a-
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-

turesT̄51022, 0.1, and 1 eV, respectively, for anisotropie
t.0.01– 100. The interaction time~for instance, for ICF or
for electron cooling! is about 1027– 1028 s. Therefore, the
ion beam–plasma interaction time can be very small co
pared to the plasma relaxation time.

III. STOPPING POWER IN PLASMAS WITHOUT
MAGNETIC FIELD

Let us analyze expression~8! in the case when a projectil
ion moves in an anisotropic two-temperature plasma with
a magnetic field. The plasma dielectric function from Eq
~6! and ~7! now takes the form

«~k,v!511
1

k2lDi
2

1

A2 WS s

AD . ~13!

Here A5@m21t(12m2)#1/2 and W(s)5g0(s)1 i f 0(s) is
the plasma dispersion function@18#,

g0~s!512s&DiS s

&
D , f 0~s!5Ap/2s expS 2

s2

2 D ,

~14!

where

Di~s!5exp~2s2!E
0

s

dt exp~ t2! ~15!

is the Dawson integral@18#, which has for large argumentss
the asymptotic behavior Di(s).1/2s11/4s3.

Substituting Eq.~13! into Eq. ~8! and performing thek
integration we obtain

S05
Z2e2

2p2lDi
2 E

0

1

dmE
0

p

dw
cosQ

A2 Q0S v
v thi

cosQ

A
,j iAD ,

~16!

wherej i5kmaxlDi and

Q0~x,j!5 f 0~x!ln
f 0

21@j21g0~x!#2

f 0
2~x!1g0

2~x!

12g0~x!S arctan
g0~x!

f 0~x!
2arctan

j21g0~x!

f 0~x! D .

~17!

In the case of an isotropic plasma (T'5Ti[T and t51)
A51, and Eq.~16! coincides with the result of, e.g., Re
@19#:

S05
Z2e2

2plD
2

v th
2

V2 E
0

V/v th
dm mQ0~m,j!, ~18!

wherev th5v thi5v th' , lD5v th /vp , andj5kmaxlD .
When a projectile ion moves slowly through a plasma,

electrons have much time to experience the ion attrac
potential. They are accelerated toward the ion, but when t
reach its trajectory the ion has already moved forward a li
bit. Hence, we expect an increased density of electron
some place in the wake of the ion. This negative cha
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density pulls back the positive ion and gives rise to the st
ping. This drag force is of particular interest for the electr
cooling process. In the limit of small velocitiesS.RV. This
looks like the friction law of a viscous fluid, and according
R is called the friction coefficient. However, in the case of
ideal plasma it should be noted that this law does not dep
on the plasma viscosity and is not a consequence of elec
electron collisions, which are neglected in the Vlasov eq
tion.

The Taylor expansion of Eq.~16! for small V (V! v̄ th)
yields the friction law

S05
Z2~e2/l̄D

2 !

3A2p

V

v̄ th
c~j̄ !@ I 1~t!1I 2~t!sin2 q#, ~19!

wherej̄5kmaxl̄D5(11V2/v̄th
2 )/Z.1/Z,

I 1~t!5
3

c~j̄ !
S 2t11

3
D 3/2E

0

1

dm
m2c„j iA~m!…

A3~m!
, ~20!

I 2~t!5
3

2c~j̄ !
S 2t11

3
D 3/2E

0

1

dm
~123m2!c„j iA~m!…

A3~m!
,

~21!

and the functionc is

c~j!5 ln~11j2!2
j2

11j2 . ~22!

In the case of an isotropic plasma (t51) we haveI 1
51 and I 250 and Eq.~19! becomes the usual friction law
@19#. For the case of strong temperature anisotropy, whet
!1(T'!Ti) we havej i.)/Z and

I 1.2
)

6c~j̄ !
@Li2~11j i

2!1 ln~11j i
2!#, ~23!

I 2.
)

12c~j̄ !
@j i

212 ln~11j i
2!13 Li2~11j i

2!#. ~24!

Here the functionsI 1 andI 2 do not depend ont, and Li2(x)
is the dilogarithm function@20#. Note thatZ!1 and there-
fore j̄@1, j i@1 in Eqs.~23! and ~24!. The Coulomb loga-
rithms in Eqs.~23! and ~24! are then the leading terms an

I 1.
)

6
ln

1

Z !I 2.
)

8Z2

1

ln~1/Z!
. ~25!

The normalized friction coefficient@Eq. ~19!# is thus domi-
nated by the second term and increases with increasingq.

In the opposite case,t@1(T'@Ti), the evaluation of
Eqs.~20! and ~21! yields

I 1.
pA6

3c~j̄ !
SA11 3

2 j̄22122 ln
11A11 3

2 j̄2

2
D , ~26!
-

nd
n-
-

I 2.
pA6

6c~j̄ !
S 11

1

A11 3
2 j̄2

22A11 3
2 j̄2

16 ln
11A11 3

2 j̄2

2
D , ~27!

and

I 1.2I 2.
p

2Z ln~1/Z!
. ~28!

ThenI 11I 2 sin2 q.I1 cos2 q and the normalized friction co
efficient decreases with increasingq in this case.

In Fig. 1 the normalized friction coefficientI 11I 2 sin2 q
is plotted as a function of temperature anisotropyt for q
50 ~solid line!, p/6 ~dotted line!, p/3 ~dashed line!, andp/2
~dot-dashed line!, and for fixed plasma density and avera
temperature (Z50.2). Figure 1 shows an enhancement
the friction coefficient when the ion moves along the dire
tion with low temperature. This effect can easily be e
plained in a binary collision picture. Let us consider the p
ticular case of a strongly anisotropic plasmaT'@Ti . In this
case the plasma electrons move mostly in the direc
across the anisotropy axis. Forq.p/2 the projectile ion
moves along the direction of the plasma electron therm
fluctuations and the effective impact parameter for electr
ion collision is very small. Thus the friction coefficient de
creases. Forq.0 the projectile ion moves perpendicular
the direction of the plasma electron thermal fluctuatio
Therefore, the impact parameter for electron-ion collisio
increases, which raises the friction coefficient.

For arbitrary projectile velocities we evaluated Eq.~16!
numerically. In Figs. 2 and 3 the stopping power is plott
for plasmas with large temperature anisotropy (t51022 and
t5102 in Figs. 2 and 3, respectively! with n05108 cm23,
T̄50.1 eV, and for four values ofq; q50 ~dotted line!, p/6

FIG. 1. Normalized friction coefficientI 11I 2 sin2 q @see Eqs.
~19!–~21!# in plasma withZ50.2 as a function oft5T' /Ti for
four values ofq: q50 ~solid line!, p/6 ~dotted line!, p/3 ~dashed
line!, andp/2 ~dot-dashed line!.
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~short-dashed line!, p/3 ~dashed line!, and p/2 ~dot-dashed
line!. The solid lines are plotted for an isotropic on
temperature plasma withT5T̄50.1 eV. The general behav
ior of the stopping power for two anisotropy parameterst is
characterized by an increase by comparison with the iso
pic case. Atq.p/2 andt51022 ~Fig. 2! the ion moves in
the direction across the longitudinal electron motion with
lower temperatureT' and the maximum of the stoppin
power is aroundV.v th' , whereas the maximum for ion
motion in the longitudinal direction is atV.v thi@v th' .

IV. STOPPING IN PLASMAS WITH WEAK
MAGNETIC FIELD

For the case when the magnetic field is weak, in the se
that the dimensionless parameterh5vc /vp is much less
than unity, the functionsG andF @Eqs. ~6! and ~7!#, which

FIG. 2. Stopping power~in units of meV/cm! as a function of
the projectile velocityV ~in units of ^v th&5 v̄ th) in a plasma with

large temperature anisotropy without magnetic field (T̄50.1 eV,
n05108 cm23, t51022) for four values of the angleq: q50 ~dot-
ted line!, p/6 ~short-dashed line!, p/3 ~dashed line!, andp/2 ~dot-

dashed line!. Solid line: isotropic plasma with temperatureT5T̄
50.1 eV.

FIG. 3. As Fig. 2, but heret5102.
o-

e

se

define the dielectric function, can be expanded about th
field-free valuesg0(s/A)/A2, f 0(s/A)/A2 @Eqs. ~14! and
~15!# as

G~s!1 iF ~s!5
1

A2 Fg0S s

AD1 i f 0S s

AD G
1h2

sin2 a

~klDi!
2 @g1~s!1 i f 1~s!#, ~29!

where

g1~s!1 i f 1~s!5 2
3 ~12t!E

0

`

t3dtS t2

2
t sin2 a21D

3exp~ ist&2A2t2!

1
is&

6
tE

0

`

t4dt exp~ ist&2A2t2!,

~30!

s5v/kv thi . Substituting expressions~29! and ~30! into Eq.
~8! leads to

S5S01h2S1 , ~31!

whereS0 is the stopping power in plasmas without magne
field @Eq. ~16!# and h2S1 represents the change due to
weak magnetic field. After some simplifications this b
comes

S15Ap/2
Z2e2

24p2lDi
2

V

v thi
E

0

1

dmE
0

p

dw
~12m2!cos2 Q

A5

3expS 2
V2

v thi
2

cos2 Q

2A2 D
3

t@72~V2/uthi
2 !~cos2 Q/A2!#24A2

f 0
2@~V/uthi!~cosQ/A!#1g0

2@~V/uthi!~cosQ/A!#
.

~32!

In the isotropic plasma (t51) Eq. ~32! coincides with the
results by May and Cramer@7# after integration overw. Note
that the additional termS1 does not depend on the cuto
parameterkmax.

In the next subsections we evaluate Eq.~32! for small and
large projectile velocities.

A. Small projectile velocities

When the projectile ion moves slowly (V, v̄ th) in the
plasma, Eq.~32! leads to the simplified expression

S15
Z2e2

60pl̄D
2
Ap/2

V

v̄ th

P~q,t!, ~33!

with

P~q,t!5S 112t

3 D 3/2

@P1~t!1P2~t!sin2q#, ~34!
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P1~t!5
5

6~12t!2 S 14t1252
3~9t14!

Au12tu
p0~t!D , ~35!

P2~t!5
5

12t~12t!2 S 3t~23t116!

Au12tu

3p0~t!228t2291t12D . ~36!

Here, the functionp0(t) is given by Eq.~12!. In an isotropic
plasma witht51 we haveP1(1)5P2(1)51.

In Fig. 4 the normalized friction coefficientP(q,t) for
the additional stopping powerS1 is plotted as a function oft
for q50 ~solid line!, p/6 ~dotted line!, p/3 ~dashed line!,
andp/2 ~dot-dashed line!. The general behavior ofP(q,t) is
similar to the friction coefficient of the plasma without ma
netic field~see Fig. 1!. Here, the correctionP(q,t) can also
be negative at smallt and q, which then corresponds to
slight decrease of the stopping power, Eq.~31!.

B. High projectile velocities

When the projectile ion moves with large velocity (V
@ v̄ th), Eq. ~32! yields

S1.2
Z2e2vp

2

4V2 ~11cos2 q!. ~37!

This result is in accord with the results of Honda, Aona, a
Kihara @6# and May and Cramer@7#, who, however, kept the
termsO(V24) in their work as well. Although the function
S1 in Eq. ~37! is proportional to the plasma density, the fu
correction termh2S1 does not depend on the plasma dens

In Figs. 5 and 6 we show the velocity dependence of
functionS1 for t51022 and 102, respectively. The differen
curves areq50 ~solid line!, p/6 ~dotted line!, p/3 ~dashed
line!, andp/2 ~dot-dashed line!. For small and medium pro
jectile velocities the weak magnetic field decreases the t
stopping power for smallt and increases it in the high-t

FIG. 4. The functionP(q,t) @see Eqs.~33!–~36!# as a function
of t5T' /Ti for four values ofq: q50 ~solid line!, p/6 ~dotted
line!, p/3 ~dashed line!, andp/2 ~dot-dashed line!.
d

.
e

al

limit. For high projectile velocities the magnetic field alway
reduces the stopping power independent of the tempera
anisotropy; see Eq.~37!.

V. STOPPING IN PLASMAS WITH STRONG MAGNETIC
FIELD

We now turn to the case when a projectile ion moves
an anisotropic plasma with a strong magnetic field, which
on one hand, sufficiently weak to allow a classical descr
tion (\vc,kBT' or \/mv th',ac), and, on the other hand
comparatively strong so that the cyclotron frequency of
plasma electrons exceeds the plasma frequencyvc@vp .
This limits the values of the magnetic field, the perpendicu
temperature, and the plasma density. From these condit
we can obtain

331026n0
1/2,B0,105T' , ~38!

FIG. 5. Additional stopping powerS1 ~in 1025 eV/cm) in

plasma (n05108 cm23, T̄50.1 eV, t51022) with weak magnetic
field @see Eq.~32!# as a function of projectile velocityV ~in units of
^v th&5 v̄ th) for q50 ~solid line!, p/6 ~dotted line!, p/3 ~dashed
line!, andp/2 ~dot-dashed line!.

FIG. 6. As Fig. 5, but heret5102.
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where n0 is measured in cm23, T' in eV, andB0 in kG.
Conditions~38! are always true in the range of paramete
n0,1015cm23, B0,100 kG, andT'.1023 eV. Then the
perpendicular motion of the electrons is complete
quenched and the stopping power depends only on the
gitudinal electron temperatureTi . The dependence on th
transverse temperature will be introduced only by the cu
parameter Eq.~9!.

In the limit of sufficiently strong magnetic field, Eq.~8!
becomes

Sinf5
2Z2e2

p2lDi
2 E

0

j i

k3dkE
0

1

dmE
0

p

dw
cosQ f 0~s!

@k21g0~s!#21 f 0
2~s!

,

~39!

with s5(V/uthi)(cosQ/m) andg0 , f 0 from Eqs.~14!, which
gives after integration overk

Sinf5
Z2e2

2p2lDi
2 E

0

1

dmE
0

p

dw cosQQ0S V

v thi

cosQ

m
,j i D .

~40!

Here the functionQ0 is given by Eq.~17!. For further sim-
plification of Eq. ~40! we introduce the new variable of in
tegrationx5cosQ/m. After w integration in Eq.~40! we fi-
nally find the stopping power in the presence of a stro
magnetic field as

Sinf~V,q!5
Z2e2

8plDi
2 QS V

v thi
,q D , ~41!

where

QS V

v thi
,q D5sin2 qE

2`

` Q0@~V/v thi!x,j i#x dx

~x21122x cosq!3/2 . ~42!

In previous work@11–13# only the case ofq50 ~the
motion of the projectile along the magnetic field directio!
has been investigated. In this case the integral in Eq.~42!
diverges, while the prefactor sin2 q tends to zero. Introducing
the new variable of integration in Eq.~42!, y5(x
2cosq)/sinq, we obtain for vanishing angleq

QS V

v thi
,q→0D52Q0S V

v thi
,j i D . ~43!

Thus expression~41! reproduces the known results for th
stopping power on an ion which moves along the direction
the magnetic field@11–13#.

In the following paragraphs we will discuss its low- an
high-velocity limits.

A. Small projectile velocities

In the low-velocity limit (V!v thi) Eq. ~42! becomes

QS V

v thi
,q D.

2V

v thi
HA2pc~j i!Fsin2 q lnS 2v thi

V sinq D
1122 sin2 qG1C1~j i!sin2 qJ , ~44!
s

n-

ff

g

f

where

C1~j i!5E
0

1 dx

x2 @Q0~x,j i!2A2pc~j i!x#

1E
1

` dx

x2 Q0~x,j i!. ~45!

Here, the functionc is defined by Eq.~22!. Since we deal
with small ion beam–plasma couplingZ!1 we havej i@1
in Eqs.~44! and ~45! and the functionC1(j) simplifies to

C1~j i!.A2p ln
2

g
ln j i10.6, ~46!

whereg50.5772 is Euler’s constant.
We note that the friction coefficientSinf /V from Eqs.~41!

and~44! contains a term which depends logarithmically onV
and which vanishes forq→0. It will be shown in the next
section that this behavior is a characteristic feature of
stopping power at low velocities for arbitrary strength of t
magnetic field.

B. High projectile velocities

In the case of high projectile velocities (V@v thi) the gen-
eral expression~42! becomes

QS V

v thi
,q D.

4pv thi
2

V2 H sin2 qF lnS 2V

v thi sinq D
1C2~j i!22G11J , ~47!

where

C2~j i!5
1

2p E
0

1

Q0~x,j i!x dx1E
1

` dx

x F x2

2p
Q0~x,j i!21G ,

~48!

which gives forj i@1 C2(j i). ln ji . The stopping power for
strong magnetic fields shows, in the low- and high-veloc
limits @Eqs.~44! and~47!#, an enhancement for ions movin
transverse to the magnetic field compared to the case o
longitudinal motion (q50). This effect is in agreement with
PIC simulation results@14#. In contrast to the field-free case
at strong magnetic field and forq50, V@uthi @Eqs.~41! and
~47!# Sinf.Z2e2vp

2/2V2 is independent ofkmax. The cutoff
kmax, necessary at low ion velocities, is, however, less w
defined here than for the field-free case, where the cutoff~9!
was deduced from the binary collision picture. Now, t
electrons are forced to move parallel toB0 . Since we as-
sumed the motion of the ion in this direction as well, the i
and an electron just pass each other along a straight line.
symmetry reasons the total momentum transfer and the s
ping power are zero. Purely binary interactions contrib
nothing and the stopping of the ion is due only to the colle
tive response of the plasma, that is, due to modes with l
wavelengthsk,1/lDi . This suggests takingkmax of the or-
der of 1/lDi , but further investigations are clearly need
here for a more precise description in this particular case
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In Figs. 7 and 8, the stopping powerSinf is plotted as a
function of projectile velocity ~in units of v thi) for n0

5106 cm23, Ti51024 eV, and T'51025 eV ~Fig. 7!, T'

50.1 eV ~Fig. 8!, and for four different values of the angl
q: q50 ~solid line!, p/6 ~dotted line!, p/3 ~dashed line!,
and p/2 ~dot-dashed line!. The enhancement ofSinf(V,q)
with respect toSinf(V,0) in the low-and high-velocity limits
by increasing the angleq is documented in Fig. 9, forTi

51024 eV, T'50.1 eV, n05106 cm23, and q5p/6 ~solid
line!, p/4 ~dotted line!, p/3 ~dashed line!, and p/2 ~dot-
dashed line!. The physical origin of this angular behavior
the low- and high-velocity limits is the enhancement of t
effective impact parameter for an individual electron-ion c
lision with increasingq. For medium projectile velocities
V.v thi the collective excitations in the plasma become i
portant and thus the stopping power is higher for smallq.

FIG. 7. Stopping powerSinf ~in meV/cm! in plasma (n0

5106 cm23, Ti51024 eV, t50.1) with strong magnetic field as
function of projectile velocityV ~in units of v thi) for q50 ~solid
line!, p/6 ~dotted line!, p/3 ~dashed line!, andp/2 ~dot-dashed line!.

FIG. 8. As Fig. 7, but heret5103.
-

-

VI. STOPPING AT ARBITRARY MAGNETIC FIELD
AND IN LOW-VELOCITY LIMIT:

ANOMALOUS FRICTION COEFFICIENT

We now proceed with a projectile ion at low velocitie
and at arbitrary magnetic field. This regime is of particu
importance for the electron cooling process@1–3#. In the
presence of a magnetic field the friction coefficient here c
tains a term that diverges like ln(vthi /V) in addition to the
usual constant one~see, e.g., Sec. III!. For this consideration
it is convenient to use the Bessel function representation
the dielectric function, which has been given, e.g., by Ic
maru @17# @see Appendix A, Eq.~A7!# and to write the real
and imaginary parts of Eq.~A7! separately,

G512
&v

ukiuv thi
L0~z!DiS v

ukiuv thi&
D 2

&

ukiuv thi
(
n51

`

Ln~z!

3H vFDiS v1nvc

ukiuv thi&
D 1DiS v2nvc

ukiuv thi&
D G1nvcS 1

t
21D

3FDiS v2nvc

ukiuv thi&
D 2DiS v1nvc

ukiuv thi&
D G J , ~49!

F5Ap/2H v

ukiuv thi
L0~z!expS 2

v2

2ki
2v thi

2 D
1

2

ukiuv thi
(
n51

`

Ln~z!expS 2
v21n2vc

2

2ki
2v thi

2 D
3Fv coshS nvcv

ki
2v thi

2 D 1nvcS 1

t
21D sinhS nvcv

ki
2v thi

2 D G J .

~50!

The notations in Eqs.~49! and~50! are explained in Appen-
dix A.

For the friction coefficient we have to considerS, given
by Eq.~8! in the low-velocity limit, and thus the functionsG

FIG. 9. The ratioSinf(V,q)/Sinf(V,0) as a function of projectile
velocity V ~in units of v thi) for Ti51024 eV, t5103, q5p/6
~solid line!, p/4 ~dotted line!, p/3 ~dashed line!, and p/2 ~dot-
dashed line!.
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andF given by Eqs.~49! and ~50!, whenv5k"V. Now we
have to write the Taylor expansion of Eqs.~49! and~50! for
smallv5k"V. However, the first term of Eq.~50! exhibits a
singular behavior in the limit ofv5k"V→0 where theki

integration diverges logarithmically for smallki . We must
therefore keepv5k"V finite in that integration to avoid suc
a divergence. This anomalous contribution that arises fr
the first term of Eq.~50! in the low-velocity limit is

San.S 2

p3D 1/2Z2e2

lDi
2

V

v thi
E

0

j i

k3dkE
0

1 dm

m E
0

p

dw cos2 Q

3
L0~z!exp@2~V2/2v thi

2 !~cos2 Q/m2!#

@k21E2~k,m!#2 , ~51!

whereL0(z)5exp(2z)I0(z), andE2(k,m)5G(v50) is

E2~k,m!511
2&h

km S 1

t
21D (

n51

`

nLn~z!DiS nh

km&
D .

~52!

Here z5(k2t/h2)(12m2), m5cosa5ki /k, and Q is the
angle betweenk andV. After m andw integration~see Ap-
pendix B!, Eq. ~51! reads

San.S 2

p D 1/2Z2e2

4lDi
2

V

v thi
sin2 q lnS v thi

V

2.26

sinq DF~t,h!,

~53!

with

F~t,h!5E
0

tj i
2 L0~x/h2!x dx

@x111~t21!L0~x/h2!#2 . ~54!

The functionF and thusSan @Eq. ~53!# vanishes in the limit
B0→0 ~or h→0) like

F~t,h!.
h

~2p!1/2 S arctan~kmaxlD'!2
kmaxlD'

11~kmaxLD'!2D .

~55!

The anomalous term Eqs.~53! and~54! therefore represent
new effect arising from the presence of the magnetic fie
which is not restricted to anisotropic plasmas.

For an isotropic plasma (t51) and for a sufficiently
weak magnetic fieldh,j i ~or vc,kmaxvthi), Eq. ~54! takes
the form

F~t,h!.expS 1

h2D F S 11
1

h2DK0S 1

h2D2
1

h2 K1S 1

h2D G ,
~56!

whereK0 andK1 are modified Bessel functions of the se
ond kind. In the case of very strong magnetic fieldh
.j iAt ~or vc.kmaxlD'), the functionF(t,h) reads

F~t,h!.C~j i!5 ln~11j i
2!2

j i
2

11j i
2 . ~57!

The physical origin of such an anomalous friction coe
cient may be traced to the spiral motion of the electro
along the magnetic field lines. These electrons naturally t
m

,

s
d

to couple strongly with long-wavelength fluctuations~i.e.,
small ki) along the magnetic field. In addition, when su
fluctuations are characterized by slow variation in time~i.e.,
small v5k"V), the contact time or the rate of energy e
change between the electrons and the fluctuations will
further enhanced. In a plasma, such low-frequency fluct
tions are provided by the slow projectile ion. The above co
pling can therefore be an efficient mechanism of energy
change between the electrons and the projectile ion. In
limit of V→0, the frequencyv5k"V→0 tends to zero as
well. The contact time thus becomes infinite and the fricti
coefficient diverges.

The anomalous friction coefficient@see Eq.~53!# van-
ishes, however, when the ion moves along the magnetic fi
(q50). Then the friction coefficient is solely given by th
second term of Eq.~50!. The contribution of this term to the
stopping power leads to the usual friction law in plasmas a
reads for arbitrary anglesq

S.S 2

p D 1/22Z2e2

lDi
2

V

v thi
E

0

j i

k3dkE
0

1 dm

m

E1~k,m!

@k21E2~k,m!#2

3@m2 cos2 q1 1
2 ~12m2!sin2 q# ~58!

with

E1~k,m!5 (
n51

`

Ln~z!expS 2
n2h2

2k2m2D F11S 1

t
21D n2h2

k2m2 G
~59!

andE2(k,m) as defined by Eq.~52!.
In Figs. 10 and 11 we compare the anomalous termSan

with the low-velocity stopping without magnetic field,S0
@see Eq.~19!#, where San/S0 is plotted as a function of
vc /vp for q5p/6 ~solid line!, p/3 ~dotted line!, and p/2
~dashed line!, Z50.1, V/ v̄ th50.2, and for two values of the
anisotropy parametert: t50.1 ~Fig. 10! and 10~Fig. 11!.

We conclude that the anomalous termSan gives an impor-
tant contribution to the stopping, especially for strong ma
netic fields (vc.vp) and for large temperature anisotropi

FIG. 10. The ratio of the anomalous stopping power to the st
ping power without magnetic field (San/S0) as a function ofvc /vp

for Z50.1, V/ v̄ th50.2, t50.1, q5p/6 ~solid line!, p/3 ~dotted
line!, andp/2 ~dashed line!.
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(T'@Ti). It should be noted that the observed enhancem
of stopping due toSan for T'@Ti is potentially interesting
for future electron cooling experiments. We note that
appearance of the anomalous term~53!, but not its size, is
independent of the cutoff~9!.

VII. SUMMARY

The purpose of this work was to investigate the stopp
power of an ion in a classical magnetized anisotropic tw
temperature plasma. A general expression obtained for
stopping power was analyzed in four particular cases: i
plasma without magnetic field; in a plasma with weak a
very strong magnetic fields; and in a plasma with arbitr
magnetic field and for low-velocity projectile.

From the results obtained in Secs. III–V, we found th
the stopping power essentially depends on the plasma
perature anisotropy. In the field-free case and for small
velocities, the anisotropy results in an enhancement of
stopping power when the ion moves in the direction with lo
temperature. For small projectile velocities a weak magn
field slightly decreases the field-free stopping power
small t; in the opposite case~larget! the field-free stopping
power slightly increases. In the high-velocity limit the co
rection to the field-free stopping power for weak magne
fields is always negative and the stopping power is redu
by the magnetic field. In the case of strong magnetic fie
we demonstrated an enhancement of the stopping power
increasingq for low- and high-velocity regions compared
the case of an ion which moves alongB0 .

In the low-velocity limit but for arbitrary magnetic field
we found an enhanced stopping power compared to the fi
free value, mainly due to the strong coupling between
spiral motion of the electrons and the long-wavelength, lo
frequency fluctuations excited by the projectile ion. Th
anomalous stopping power increases with the angleq ~be-
tween the ion velocityV and the magnetic fieldB0) and
depends strongly on the temperature anisotropyt5T' /Ti ,
as seen in Figs. 10 and 11. Although the nature of
anomalous stopping power is only conditioned by the ex
nal magnetic field, the temperature anisotropy of the plas
can intensify this effect whenT'@Ti ~see Fig. 11!.

This emphasizes the importance of the special role
fluctuations with smallki and smallv ~small projectile ve-
locity V) and as another significant contribution to the e
ergy exchange processes arising from the collective mode
plasma. Potentially, the electron plasma waves and the
acoustic waves in a magnetized plasma might provide a
nificant energy-exchange mechanism between projectile
and plasma particles. This fact makes it necessary to cons
the influence of plasma collective modes on the anoma
stopping process. This problem will be treated in a sub
quent work.

ACKNOWLEDGMENTS

It is our pleasure to thank Professor Christian Toepffer
helpful discussions. One of the authors~H.B.N.! is grateful
for hospitality at the Institut fu¨r Theoretische Physik II, Uni-
versität Erlangen-Nu¨rnberg, where this work was conclude
and would like to thank the Deutscher Akademischer A
nt

e

g
-
he
a

d
y

t
m-
n
e

ic
r

c
d
s
ith

d-
e
-

e
r-
a

f

-
of
n

g-
n
er
s

e-

r

-

tauschdienst for financial support.

APPENDIX A

Here we describe the evaluation of the dielectric funct
in the temperature anisotropic case where the velocity dis
bution of the unperturbed distribution function is given b
Eq. ~4!. We next introduce the Fourier transformations
f 1(r ,v,t) with respect to variablesr and t, f 1(k,v,v). Be-
cause of the cylindrical symmetry~around the magnetic field
directionb5B0 /B05 ẑ) of the problem, we choose

v5v' coss x̂1v' sins ŷ1v iẑ. ~A1!

Then the Vlasov Eq.~2! for the distribution function be-
comes

]

]s
f 1~k,v,v!1

i

vc
~k•v2v2 i0! f 1~k,v,v!

52
ie

mvc
w~k,v!S k

] f 0

]v D , ~A2!

wherew(k,v) is the Fourier transformation ofw(r ,t). The
positive infinitesimal1 i0 in Eq. ~A2! serves to assure th
adiabatic turning on of the disturbance and guarant
thereby the causality of the response. The solution of
~A2! has the form

f 1~k,v,v!52
ie

mvc
w~k,v! Ès

ds2S k
] f 0

]v D
s5s2

3expS i

vc
E

s

s2
ds1@2v2 i01~k•v!s5s1

# D .

~A3!

Combining Eq.~A3! with the Poisson equation~3! we find
for the dielectric function

FIG. 11. As Fig. 10, but heret510.
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«~k,v!512
4p ie2

mvck
2 E

0

`

v'dv'E
0

2p

dsE
2`

1`

3dv i Ès

ds2S ki

] f 0

]v i
1k' cos~w2s2!

] f 0

]v'
D

3expS i

vc
E

s

s2
ds1@kiv i2v2 i01k'v'

3cos~w2s1!# D , ~A4!

where kx5k' cosw, ky5k' sinw. After integration by the
variabless1 , s2 , ands, and using the expression@20#

exp~2 iz sinu!5 (
n52`

1`

Jn~z!exp~2 inu!, ~A5!

whereJn is the Bessel function of thenth order, we obtain
the expression@17#

«~k,v!512
8p2e2

mk2 (
n52`

1` E
0

`

v'dv'E
2`

1`

dv iS nvc

v'

] f 0

]v'

1ki

] f 0

]v i
D Jn

2~k'v' /vc!

nvc1kiv i2v2 i0
. ~A6!

Substituting Eq.~4! for the unperturbed distribution func
tion f 0 into Eq. ~A6! we finally obtain

«~k,v!511
1

k2lDi
2 H 11 (

n52`

1` S 11
Ti

T'

nvc

v2nvc
D

3FWS v2nvc

ukiuv thi
D21GLn~b!J , ~A7!

whereb5k'
2 v th'

2 /vc
25k'

2 ac
2, Ln(z)5exp(2z)In(z), I n(z) is

the modified Bessel function of thenth order, andW(z) is
the plasma dispersion function@18#.

To show the identity of the two forms@Eqs.~6! and~A7!#
of the dielectric function we will use the expansion in mod
fied Bessel functions@20#

exp~z cosu!5 (
n52`

`

I n~z!exp~ inu!. ~A8!

This allows us to rewrite exp@2X(t)# with X(t) from Eq. ~7!
as
d

av
exp@2X~ t !#5exp~2t2 cos2 a! (
n52`

1`

Ln~b!expS invct&

kv thi
D .

~A9!

Substituting Eq.~A9! into expression~6! and integrating
over the variablet leads to Eq.~A7!.

APPENDIX B

We now give a more detail derivation of the anomalo
term Sar @Eq. ~53!#. We start with the expression

Q~k,w,L!5E
0

1 dm

m
F~m,k,w!expS 2

l2f2~m,w!

2m2 D
~B1!

@see Eq.~51!#, wheref(m,w)5cosQ, l5V/v thi , and

F~m,k,w!5
L0~z!cos2 Q

@k21E2~k,m!#2 . ~B2!

For l→0 a leading-term approximation of Eq.~B1! leads to

Q~k,w,l!.F~0,k,w!ln
&

luf~0,w!uAg
1O~1!, ~B3!

whereg is Euler’s constant,uf(0,w)u5sinqucoswu,

F~0,k,w!5
L0~k2t/h2!sin2q cos2 w

@k21E2~k,0!#2 , ~B4!

and

E2~k,0!5112S 1

t
21D (

n51

`

Ln~k2t/h2!. ~B5!

Using the relation@17,20#

(
n52`

1`

Ln~z!51, ~B6!

the functionE2(k,0) finally takes the form

E2~k,0!5
1

t
1S 12

1

t DL0~k2t/h2!. ~B7!

Substituting Eqs.~B3!, ~B4!, and~B7! into Eq. ~51! and in-
tegrating overw, we finally come to expression~53!.
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