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Stopping power of ions in a magnetized two-temperature plasma

H. B. Nersisyarf, M. Walter, and G. Zwicknagel
Institut fir Theoretische Physik I, Universit&rlangen, D-91058 Erlangen, Germany
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Using the dielectric theory for a weakly coupled plasma, we investigate the stopping power of an ion in an
anisotropic two-temperature electron plasma in the presence of a magnetic field. The analysis is based on the
assumption that the energy variation of the ion is much less than its kinetic energy. A general expression for
the stopping power is analyzed for weak and strong magnetic fie&sfor the electron cyclotron frequency
less than and greater than the plasma frequeraoyd for low and high ion velocities. It is found that the
usually velocity independent friction coefficient contains an anomalous term which diverges logarithmically as
the projectile velocity approaches zero. The physical origin of this anomalous term is the coupling between the
cyclotron motion of the electrons and the long-wavelength, low-frequency fluctuations produced by the pro-
jectile ion.

PACS numbeps): 52.40.Mj, 34.50.Bw, 52.35:g

[. INTRODUCTION energy loss of a charged particle moving with arbitrary ve-
locity was studied in Ref.7]. The expression obtained there
The energy loss of ions in a plasma has been a topic dir the Coulomb logarithmA =In(\p/p,) (where\p is the
great interest due to its importance for the study of basidebye length ang, is the impact parameter for scattering
interactions of charged patrticles in real media. Recent applifor an angled= =/2), corresponds to the classical descrip-
cations are electron cooling of heavy ion bedrs3] and  tion of collisions. In the quantum-mechanical case, the Cou-
energy transfer for inertial confinement fusid&F) (see[4] lomb logarithm isA =In(Ap/\g), whereh g is the de Broglie
for an overview. Electron cooling is realized by mixing the wavelength of the plasma electrofis).
ion beam periodically with a cold electron beam of the same In Ref. [10], expressions were derived describing the
average velocity. The interaction length is normally about astopping power of a charged particle in a Maxwellian plasma
few meters, and the electron beam is guided by a magnetiglaced in a classically strong magnetic fieldg&a.<\p,
field parallel to its direction of motion. The cooling of the where a. is the electron Larmor radiysunder conditions
ion beam may then be viewed as an energy loss in the conwhen scattering must be described quantum mechanically.
mon rest frame of both beams. Similar questions arise imMhe calculations were carried out for slow test particles
heavy-ion-induced ICF. There a frozen hydrogen pellet isvhose velocities satisfy the conditionam{m;)Y3v,<V
heated and compressed by stopping of ion beams in the sw<v,, wherem; is the mass of the plasma ions amds the
rounding converter. In this case the electrons of the solicklectron mass.
state converter are acting like a plasma and absorb the in- In a recent papdrll], the stopping power in a magnetized
coming energy. plasma was investigated for high-velocity light particles, tak-
In the electron cooling process the velocity distribution ofing into account the Larmor rotation of a test projectile in a
the electron beam is highly anisotropic because of the accetagnetic field. It was shown that the stopping power can
eration from the cathode to the cooling section. It can beexhibit an oscillatory dependence on the magnetic field and
described by a Maxwell distribution with two different tem- that it is much greater than without a magnetic field. More
peratures, a longitudindl, and a transvers&, [1-3]. Fur-  attention has been paid to the stopping power in a strongly
thermore, an external, longitudinal magnetic field is needednagnetized plasma for ions that move along the magnetic
to guide the electrons from the cathode to and through théeld [11-13. Both uncorrelated11,13 and correlated12]
electron cooler and to stabilize the anisotropic velocity dissituations have been discussed. These investigations have
tribution by suppressing the transverse-longitudinal relaxconcentrated on the stopping power in an isotropic one-
ation. temperature plasma. Extensions to nonlinear effects of ion
In the present paper we are interested in the influences aftopping and temperature anisotropy have been made re-
the magnetic field and the temperature anisotropy on the ionently by particle-in-cell(PIC) computer simulatior(14],
beam stopping power. Since the early 1960s several theoretshere the cas& <T, has been investigated, which is inter-
ical calculations of the stopping power in a magnetizedesting for the electron cooling process. Here, in the frame-
plasma have been presenfé&d-14]. Stopping of a fast test work of dielectric theory, we will focus on the stopping
particle moving with velocityy much higher than the elec- power at arbitrary temperature anisotropy/T; .
tron thermal velocityy, was studied in Refd5, 6, §. The The paper is organized as follows. We start in Sec. Il by
solving the linearized Vlasov-Poisson equations by means of
Fourier transformation. This provides the general form of the
*Permanent address: Division of Theoretical Physics, Institute ofinearized potential generated in a magnetized Maxwellian
Radiophysics and Electronics, 1 Alikhanian Brothers Str.,plasma by a projectile ion, from which the stopping power is
Ashtarak-2, 378410, Armenia. deduced. In Sec. lll, we apply our results to a nonmagnetized
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plasma. Calculations are carried out for small projectile ve-

locities at arbitrary temperature anisotropy and arbitrary di- VZp= —4WZG5(Y—Vt)+4Wef dvfy(rv,t). (3
rection of ion motion with respect to the anisotropy axis.

Then we turn to the effect of a weak magnetic field on the .

stopping power in Sec. IV, while we concentrate on the in-P IS the unit vector parallel 18, —e andw.=eBy/mcare
fluence of a strong magnetic field in Sec. V. In contrast witht® charge and Larmor frequency of the plasma electrons,
the paperd11,13 we consider ion motion in an arbitrary respectively, and is th_e unperturbed distribution functl_on
direction. As the last issue we investigate in Sec. VI the®f Plasma electrons, which is here given by two Maxwellians
stopping power for small projectile velocities at arbitrary for the longitudinal and transverse degrees of freedom,
magnetic field and temperature anisotropy. The friction co-

efficient there contains an anomalous term which increases No Uf vﬁ
logarithmically when the projectile velocity approaches zero. fo(v),v,)= (2)3/—202@([{ 52 )ex;{ T 5,2 ) '

The results achieved are finally summarized and discussed in T Vi Ui Vth vt

Sec. VII.

where(v?)=vi, =kgT,/m and(v?)=2v%, =2kgT, /m.
Il. DIELECTRIC THEORY By solving Egs.(2) and(3) in space-time Fourier compo-

For the anisotropic plasma with two different tempera-nents’ we obtain the electrostatic potential

turesT, and T, of the electrons we define an average tem-

peratureT=3T,+ 2T, . Within dielectric theory, the elec- _ Ze exdik-(r—=Vt)]

tron plasma is described as a continuous, polarizable fluid o(rH= 2m2 K%s(k,k-V)
(medium, which is represented by the phase-space density

of the electrong(r,v,t). Here, only a mean-field interaction

between the electrons is considered, and hard collisions a

e o s s T2, ragnetc eld. The dlectrc ncioc(, o) of  homage-
y q ' heous, magnetized, and anisotropic plasma is given by
for weakly coupled plasmas where the number of electrons

in the Debye spherd;lD=4wnofg>l, is very large. Here

n, is the electron density anip=(kgT/4mnye?)Y? is an e(K,w)=1+ ——o

averaged Debye length. K\ py
In the following, we consider a nonrelativistic projectile 1

ion with chargeZe and with a velocityV which moves in a =1+ 55—

magnetized anisotropic two-temperature plasma at an angle k“Ap

¥ with respect to the magnetic fieBl. The axis defined by ) "

B, also coincides with the degree of freedom of temperature Fid L M a(l— T)J dtsin(

T,. We assume that the energy variation of the ion is much We 0

smaller than its kinetic energy. We ignore any role of the

electron spin or magnetic moment due to the nonrelativistic xex;{istﬁ—X(t)]} (6)

motion of the ion and the plasma electrons. The strength of

the coupling between an ion moving with velocWyand the

electron plasma is given by the coupling parameter with

®

which provides the dynamic response of the plasma to the
[Rotion of the projectile ion in the presence of the external

[G(s)+iF(s)]

1+i5\/§jwdtexmstf2—X(t)]
0

wct\/f)
Kv

L 1
= Np(1+V22) @ X(t) =t2 cog a+K?aZ si? «

w V2
1- cos( ) } , (7

Kv gy

Herevy=(kgT/m)*? is the average thermal velocity of an where \p=vy/w,, @, is the plasma frequencys
electron. The derivation of Eq1) is discussed in detail in =wlkvg, 7=T,IT,, a,=v4, /w., anda is the angle be-
Ref.[16]. The parameteg characterizes the ion-target cou- tween the wave vectdr and the magnetic field.

pling, whereZ<1 corresponds to weak, almost linear cou-  As shown in Appendix A, Eqs(6) and (7) are identical

pling andZ=1 to strong, nonlinear coupling. with the Bessel function representation &fk,w) derived,
For a sufficiently small perturbatiorg(<1) the linearized e.g., by Ichimary17]. Equations(6) and (7) are, however,
Vlasov equation of the plasma may be written as more convenient when studying the weak and strong mag-
netic field limits in Secs. IV and V.
of,  ofy of, e dp of, The stop_ping_ poweS of an ion is defined as the energy
W-i—VW— w(VXDb) o mar v (2 loss of the ion in a unit length due to interactions with the

plasma electrons. From E(p) it is straightforward to calcu-
late the electric fieldE= —V ¢, and the stopping force acting
wheref="fy+f, and the self-consistent electrostatic poten-on the ion. Then, the stopping power of the projectile ion
tial ¢ is determined by the Poisson equation becomes
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o UE_, 0
T e;@(,

turesT=102, 0.1, and 1 eV, respectively, for anisotropies
7=0.01-100. The interaction timgor instance, for ICF or
for electron cooling is about 107—10 8s. Therefore, the

ZZZeZ)\%H fkmax 3dkfld fw ion beam—plasma interaction time can be very small com-
=2 M

r=vt

2 pared to the plasma relaxation time.

g cosOF(s) o lIl. STOPPING POWER IN PLASMAS WITHOUT
X
(P[kz)\D”JrG(s)]erFz(s) : (8) MAGNETIC FIELD

h i th le b & and B. O is th Let us analyze expressi@8) in the case when a projectile
where p=cosa Is the angle betweek and Bo,0 is the 5, 465 in an anisotropic two-temperature plasma without

angle betweenk and V, s=k-V/kvy=(V/v)cosO, 5 magnetic field. The plasma dielectric function from Egs.
cos®=p cosd—1— u? sin¥cose, and ¥ is the angle be- (6) and (7) now takes the form
tweenV andB;. In Eq.(8) we introduced a cutoff parameter

Kmax= 1/ min (Where r i, is the effective minimum impact S

parameter in order to avoid the logarithmic divergence at e(kw)=1+ 77 77 W(K)- (13
large k. This divergence corresponds to the incapability of Dl

the linearized Vlasov theory to treat close encounters berere A=[ 2+ 7(1—u?)]¥2 and W(s) =go(s) +ifo(S) is
tween the projectile ion and the plasma electrons properlythe plasma dispersion functigasg],

For r i, we thus use the effective minimum impact param-

eter of classical binary Coulomb collisiong;,= Ze2/mvr for .
relative velocities, = (V2+v2)*2, which is often called the go(s)=1—sv2Di
“distance of closest approach.” Hence

2
%, o(S)—J_Zsexu( S),

2

(14)
o L mviru (@ Where
max I min Ze2 ’ .
H — 2 2
A two-temperature description of an electron plasma is Di(s)=exp(—s )fodtexp(t ) (19

valid only when the ion beam—plasma interaction time is less

than the relaxation time between the two temperatlifesxd  is the Dawson integrdlL8], which has for large argumenss
T, . For an estimate we will briefly consider the field-free the asymptotic behavior Déf= 1/2s+ 1/4s>.

case, because the external magnetic field suppresses the re-Supstituting Eq.(13) into Eq. (8) and performing thek
laxation between the transverse and longitudinal temperantegration we obtain

tures during the time of flight of the ion beam through the

plasma cos® v cos®

The problem of a temperature relaxation in an anisotropic 2W2)\D” J df“J’ YA O(J T'gA)’
plasma with and without an external magnetic field was con- (16)
sidered by Ichimar{i17]. Within the dominant-term approxi-
mation, the relaxation time& 7 for the plasma without where¢,=kmpahp and

magnetic field is given by

fo+[6+go(x)]?
s noe QO(Xlg):fO(X)In +
=& Jalm——pIn A, (10) o(X) +go(x)
ArreI (kBTef‘f) >
Jo(X) § +go(X)
where InA.=In(Np) is the Coulomb logarithm and the effec- +29g0(x) arCta”fo(X) arctan Fo(X)
tive electron temperatur€.; is defined through an
21 _,,2
i:gfl po(1=p7)du In the case of an isotropic plasma (=T,=T and r=1)
T O[w?T +(1—pu?)T, 132 A=1, and Eq.(16) coincides with the result of, e.g., Ref.
[19]:
5V3 (1+27)%2 r+2 ) o2 v v
= po(7)—3|, (11 e Uy [Viom
12732 (=1 | /|7—1] %Imw . dwrQolp,8), (18)
1+yJ1—7 wherevy=vy=vn , Ap=vn/wp, andé=Knadp-
_ T <1 When a projectile ion moves slowly through a plasma, the
Po(7) = T (12 electrons have much time to experience the ion attractive
arctan/r—1, 7>1. potential. They are accelerated toward the ion, but when they

reach its trajectory the ion has already moved forward a little
The relaxation times calculated from Ed.1) are of the bit. Hence, we expect an increased density of electrons at
order of 10°°, 0.5x10 °, and 10 3s for averaged tempera- some place in the wake of the ion. This negative charge
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density pulls back the positive ion and gives rise to the stop-

ping. This drag force is of particular interest for the electron — =0

cooling process. In the limit of small velociti€&=RV. This I d=mi6
looks like the friction law of a viscous fluid, and accordingly N, :_'__'_g:;'g

Ris called the friction coefficient. However, in the case of an

ideal plasma it should be noted that this law does not depend ?2
on the plasma viscosity and is not a consequence of electron- 2
electron collisions, which are neglected in the Vlasov equa- &,
tion. n

The Taylor expansion of Eq16) for smallV (V<uvy,) =
yields the friction law —

ZEDD) VB (i insiFe), (19 0
= T 7)SI y T T T
3V27 Ut ! 2 102 10 10° 10" 10°

whereé=Kpahp=(1+V/02) Z=1/Z,
FIG. 1. Normalized friction coefficient,+1, sir? 9 [see Egs.

3 (2741 32 ., w2P(EA(R)) (19—(21)] in plasma withZ=0.2 as a function ofr=T, /T, for
l1(7)=— f w 3” , (200  four values ofd: 9=0 (solid line), 7/6 (dotted ling, /3 (dashed
pé\ 3 0 A(w) line), and /2 (dot-dashed ling
3/2
3 [27+1 L (1-3u?) P A()
lo(1)= —— J du 3 ” , |~ W\/g 14 ! o143
29(6)\ 3 0 A1) 7= ——2V1+3¢
(21) 6y (&) 1+3¢&2
and the functiony is 1+ /1+§Ez
) +6In—— |, (27)
2
— 2\
P(§)=In(1+ &%) (s (22
. . and
In the case of an isotropic plasma=1) we havel,
=1 andl,=0 and Eq.(19) becomes the usual friction law T
[19]. For the case of strong temperature anisotropy, when ly=—1p= 2ZIn(1Z)" (28)

<1 (TL < TH) we haveé:llz‘/?/Z and

Thenl,+1, sir? 9=I, cog & and the normalized friction co-
efficient decreases with increasirigin this case.
In Fig. 1 the normalized friction coefficient + 1, sir? 9
is plotted as a function of temperature anisotrapfor
s =0 (solid line), 7/6 (dotted ling, #/3 (dashed ling and /2
3 2 5 . 2 (dot-dashed ling and for fixed plasma density and average
o= 1 l//(g) [&7+2In(1+ &) +3 Lio(1+p)]. (24 temperature £=0.2). Figure 1 shows an enhancement of
the friction coefficient when the ion moves along the direc-
tion with low temperature. This effect can easily be ex-

Here the functions$; andl, do not depend om, and Li(X) , . . - . . i
is the dilogarithm functiorf20]. Note thatZ<1 and there- plamed in a binary collision _p|cture_. Let us consider th(_a par
ticular case of a strongly anisotropic plasma>T,. In this

fore £&>1, §>1 in Egs.(23) and (24). The Coulomb loga- ¢case the plasma electrons move mostly in the direction
rithms in Egs.(23) and(24) are then the leading terms and 55r0ss the anisotropy axis. Fér=/2 the projectile ion
moves along the direction of the plasma electron thermal
(25) fluctuations and the effective impact parameter for electron-
ion collision is very small. Thus the friction coefficient de-
creases. Foff=0 the projectile ion moves perpendicular to
The normalized friction coefficierfteq. (19)] is thus domi-  the direction of the plasma electron thermal fluctuations.
nated by the second term and increases with increa$ing Therefore, the impact parameter for electron-ion collisions
In the opposite caser>1(T,>T,), the evaluation of increases, which raises the friction coefficient.

Vi ’ 2
ly=———[Li(1+§)+In(1+£P], (23
64(8)

1 V3 1

| ‘[I | _
=% Nz<l2" gz haz)

Egs.(20) and(21) yields For arbitrary projectile velocities we evaluated Ed6)
numerically. In Figs. 2 and 3 the stopping power is plotted

4, 372 for plasmas with large temperature anisotropy=(L0~ 2 and

|12W_\/E Vi+ig—1-2 |nu . (26 7=107in Figs. 2 and 3, respectivelyith no=10°cm?,

3y(¢) 2 T=0.1eV, and for four values of; 9=0 (dotted ling, =/6
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247 define the dielectric function, can be expanded about their
I _ field-free valuesgy(s/A)/A?, fy(s/A)/A? [Egs. (14) and
!""l\‘\i T{‘siu:;pwp]asma (15)] as
i\ = oo
) Y o . 1 s\ . [s
8 i; 3 =2 G(s)+iF(8)= 22| %| & +ify x
>
o 12§/ % , sifa
E B N T pleetifiel, @9
— (k)\
o i SN -
E ."' : \\\ \‘\ T .
_? 0.6':’.’ N ., ..‘.\ Where
' ~\1"’“'-;..;,..._ o t2
0.0 : : : : . g1(s) +if1(s)=5(1-17) t3dt<57-sinza—1)
0 1 2 3 4 5 6 0
Vi<v, > X exp(istv2 — A?t?)
FIG. 2. Stopping powe(in units of meV/cm as a function of + isv2 fot“dt exp(ist\@—Aztz)
6 0 '

the projectile velocityV (in units of (vy,) =vy) in a plasma with
large temperature anisotropy without magnetic field=0.1 eV,

no=10% cm 3, 7=10"2) for four values of the anglé: ¥=0 (dot-
ted ling, /6 (short-dashed line /3 (dashed ling and@/2 (dot-  g— /. . Substituting expressiornt@9) and (30) into Eq.

dashed ling Solid line: isotropic plasma with temperatufe=T (8) leads to
=0.1eV.
S=So+ 7°Sy, (32)

(short-dashed line /3 (dashed ling and #/2 (dot-dashed
line). The solid lines are plotted for an isotropic one- whereS, is the stopping power in plasmas without magnetic
temperature plasma witi=T=0.1eV. The general behav- field [Eq. (16)] and #°S; represents the change due to a
ior of the stopping power for two anisotropy parameteis weak magnetic field. After some simplifications this be-
characterized by an increase by comparison with the isotrocomes
pic case. At9= /2 andr=10 ? (Fig. 2) the ion moves in

Z%e® V fl fwd (1— u?)cos O

o

the direction across the longitudinal electron motion with the S,= a2 v
lower temperaturel, and the maximum of the stopping 1 24772)\%” Uth AS

(30

power is aroundV=vy, , whereas the maximum for ion 5
motion in the longitudinal direction is &t=v > vy, - < ex V cos @ .)
UthH F
IV. STOPPING IN PLASMAS WITH WEAK 22 201 A2
MAGNETIG FIELD ‘. 17—V /uth”)(cos?z@/A )]—4A |
N . fol(V/Ugy) (cos®/A) ]+ g5l (V/ugy ) (cosO/A) ]
For the case when the magnetic field is weak, in the sense (32

that the dimensionless parametgr w./w, is much less

than unity, the function& andF [Egs. (6) and (7)], which In the isotropic plasmas=1) Eq. (32) coincides with the
12 results by May and Cram¢v] after integration ovep. Note

’ that the additional tern8; does not depend on the cutoff

parametek,ax-
In the next subsections we evaluate ER{) for small and

large projectile velocities.

0843 .\
T
W EVANNERAN A. Small projectile velocities
5 [} / LY N, ) ] ) o .
) N b When the projectile ion moves slowlW&Kuvy,) in the

\
- plasma, Eq(32) leads to the simplified expression

-dE/dl [meV/cm]

044t
! ~ —P(ﬂ ), 33)
GOW)\D Uth
0.0 : : : : ;
0 1 2 3 4 5 6 with
Vi<vy> 1+27\%2 2
FIG. 3. As Fig. 2, but here=10%. P(9,7)=|—3 [Py(7)+Pon)simd], (34
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1
0 .
i T
e
E N |'" /'/,;
9 Wy
© > 2 ':‘ll '.‘. 4.4".
> ".’o ¥ - g:?r/s
2 o 4l W/ S i
= "
— ]
]
I Y
]
r T T -5 T r T T T
107 10™ 10° 10! 10° 0 1 2 3 4 5 6
T Vi<v, >

FIG. 4. The functiorP(%,7) [see Egs(33)—(36)] as a function FIG. 5. Additional stopping powesS; (in 10 °eV/cm) in
of =T, /T, for four values ofd: 9=0 (solid line), /6 (dotted plasma fp=10° cm™3 T=0.1eV r= 10-2) with weak magnetic
line), /3 (dashed ling and /2 (dot-dashed line field [see Eq(32)] as a function of projectile velocity (in units of
(viy=vg) for 3=0 (solid line), =/6 (dotted ling, =/3 (dashed

3(97+4) line), and #/2 (dot-dashed ling

—— T)), (35
m pO(

147+ 25—

P1(T)=mz

limit. For high projectile velocities the magnetic field always

reduces the stopping power independent of the temperature
P,(7)= 5 , 37(237116) anisotropy; see Eq37).
127(1—17) N
5 V. STOPPING IN PLASMAS WITH STRONG MAGNETIC
) o ) _ We now turn to the case when a projectile ion moves in
Here, the functiompy(7) is given by Eq.(12). In an isotropic

. an anisotropic plasma with a strong magnetic field, which is,
plasma with7=1 we haveP;(1)=P,(1)=1. on one hand, sufficiently weak to allow a classical descrip-
In Fig. 4 the normalized friction coefficier®R(%,7) for  tion (hw.<kgT, or ilmuy, <a.), and, on the other hand,
the additional stopping powe; is plotted as a function of  comparatively strong so that the cyclotron frequency of the

for $=0 (solid line), /6 (dotted ling, =/3 (dashed ling  plasma electrons exceeds the plasma frequengy w,,.
and /2 (dot-dashed line The general behavior &1(9,7) i This limits the values of the magnetic field, the perpendicular

similar to the friction coefficient of the plasma without mag- temperature, and the plasma density. From these conditions
netic field(see Fig. 1 Here, the correctiof(,7) can also  we can obtain

be negative at smalt and ¥, which then corresponds to a
slight decrease of the stopping power, Egfl).

3X10 %ny?<By<10°T,, (39)
B. High projectile velocities
When the projectile ion moves with large velocity ( 1.8
>vw), EQ.(32) yields
7%’ w}; 124f
Slz—W(U—COS’-ﬂ). (37 :

This result is in accord with the results of Honda, Aona, and
Kihara[6] and May and Cramdi7], who, however, kept the
termsO(V %) in their work as well. Although the function
S, in Eq. (37) is proportional to the plasma density, the full
correction termp?S; does not depend on the plasma density.
In Figs. 5 and 6 we show the velocity dependence of the
functionS,; for 7=10 2 and 16, respectively. The different
curves ared =0 (solid line), #/6 (dotted ling, #/3 (dashed 0
line), and 7/2 (dot-dashed ling For small and medium pro-
jectile velocities the weak magnetic field decreases the total
stopping power for small- and increases it in the high-

S, [10° eV/em]

FIG. 6. As Fig. 5, but here=10".
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wheren, is measured in cA?, T, in eV, andB, in kG.  where
Condi(t)iltgns((sg) are always true in the ragge of parameters
Ng<<10~cm °, By<100kG, andT,>10~eV. Then the
perpendicular motion of the electrons is completely Ci(&)= J 2 [Qo(x. &)~ \/_’p(g”)x]
guenched and the stopping power depends only on the lon-
gitudinal electron temperatur€,. The dependence on the *
transverse temperature will be introduced only by the cutoff * L FQO(Xf”)' (45)
parameter Eq(9).

In the limit of sufficiently strong magnetic field, E)  Here, the functiony is defined by Eq(22). Since we deal
becomes with small ion beam—plasma coupling<1 we havef>1

in Egs.(44) and(45) and the functiorC4(¢) simplifies to
s, 27% Zf§|k3dkf d,uf 4 cosOfy(s) !
f— [k2

7\5, +00(s) ]2+ f5(s)”

(39 Ci(§)=\2m n> 5 n&+086, (46)
with s=(V/uy)(cos®/u) andgo,fo from Egs.(14), which  where y=0.5772 is Euler's constant.
gives after integration ovek We note that the friction coefficietS¢/V from Eqgs.(41)
and(44) contains a term which depends logarithmically\bn
f d f de cos®Q ( v @ ) and which vanishes foft—0. It will be shown in the next
™ D” K 0 Uth) M ! section that this behavior is a characteristic feature of the

(40 stopping power at low velocities for arbitrary strength of the
magnetic field.
Here the functiorQ, is given by Eq.(17). For further sim-
plification of Eq.(40) we introduce the new variable of in- B. High projectile velocities
tegrationx=cos®/u. After ¢ integration in Eq.(40) we fi-

nally find the stopping power in the presence of a strong N the case of high projectile velocitie¥ % vyy) the gen-
magnetic field as eral expression42) becomes

oy v ):477%{ ( 2v )
SV, 9) = 5— )\DQ(;N”?)' (4D (Utm'ﬁ V2 3! Uy SINY
where +Ca(§)—2|+1y, (47)
Vool = Qol (VIv)x, &lx dx where
Q m,ﬁ)—smzf} —w (X2+1—-2xcos®)¥?" (42)

1 (1 = dx[ x?

In previous work[11-13 only the case of9=0 (the CZ(g”):ﬂJO Qo(x,§)x dx+ L T[ZQO(X'gl)_l}’
motion of the projectile along the magnetic field direcjion (48)
has been investigated. In this case the integral in (Eg)
diverges, while the prefactor it tends to zero. Introducing which gives for§>1 C,(&,)=In §. The stopping power for
the new variable of integration in EQ(42), y=(x  strong magnetic fields shows, in the low- and high-velocity
—cosd)/sin ¥, we obtain for vanishing anglé limits [Eqgs.(44) and(47)], an enhancement for ions moving

v transverse to the magnetic field compared to the case of the
longitudinal motion =0). This effect is in agreement with
Q(fh”'ﬁ_’o) 2Q0< f) (43 PIC simulation resultf14]. In contrast to the field-free case,
at strong magnetic field and fér=0, V>uy, [Egs.(41) and
Thus expressiort41) reproduces the known results for the (47)] Sy=Z?€?w;/2V? is independent okqa. The cutoff
stopping power on an ion which moves along the direction ok,,,,, necessary at low ion velocities, is, however, less well

the magnetic field11-13. defined here than for the field-free case, where the c(®ff
In the following paragraphs we will discuss its low- and was deduced from the binary collision picture. Now, the
high-velocity limits. electrons are forced to move parallel By. Since we as-
sumed the motion of the ion in this direction as well, the ion
A. Small projectile velocities and an electron just pass each other along a straight line. For
o symmetry reasons the total momentum transfer and the stop-
In the low-velocity limit (V<vy,) Eq. (42) becomes ping power are zero. Purely binary interactions contribute
nothing and the stopping of the ion is due only to the collec-
Q(_ 19) = _( \/_11,(5“) sird am( Vthi ) tive response of the plasma, that is, due to modes with long
Uth Uth Vsind wavelengthk<1/\p,. This suggests taking,, of the or-

der of 1Ap,, but further investigations are clearly needed

+1—2sirt & |+ Cy(&)sir? 1‘}], (44) here for a more precise description in this particular case.
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FIG. 7. Stopping powerSy; (in meV/cm in plasma (g FIG. 9. The ratioSy(V,93)/Sn(V,0) as a function of projectile

=10°cm™3, T,=10"*eV, r=0.1) with strong magnetic field as a velocity V (in units of vy) for T,=10"%eV, r=10°, 9=u/6
function of projectile velocity/ (in units ofvy,) for 9=0 (solid (solid line), 7/4 (dotted ling, #/3 (dashed ling and #/2 (dot-
line), #/6 (dotted ling, #/3 (dashed ling and#/2 (dot-dashed line dashed ling

In Ei 7 d 8 th . . | d VI. STOPPING AT ARBITRARY MAGNETIC FIELD
n Figs. 7 and 8, the stopping pow&y is plotted as a AND IN LOW-VELOCITY LIMIT-

function of projectile velocity(in units of vy,) for ng ANOMALOUS ERICTION COEFEICIENT

=10°cm™3 T;=10""eV, andT,=10""eV (Fig. 7), T, . o N
=0.1eV (Fig. 8), and for four different values of the angle ~ We now proceed with a projectile ion at low velocities
9 =0 (solid line), =/6 (dotted lin®, =/3 (dashed ling gnd at arbitrary magnetic field. T_his regime is of particular
and /2 (dot-dashed ling The enhancement o8, (V,d) importance for the e[ec'qon coolmg_ proce[é;—g]. In the
with respect taS,(V,0) in the low-and high-velocity limits presence of a magnetic field the friction coefficient here con-
by increasing the anglé is documented in Fig. 9, fof, tains a term that diverges like ng,/V) in addition to the
10 %eV, T, =0.1eV, ny=10° cm 2, and 9= /6 (solid usual constant ongsee, e.g., Sec. )l For this consideration
line), 4 ’(détted. |in€)' 770/3 (dashed' ling and /2 (dot- it is convenient to use the Bessel function representation of

) . o . .. the dielectric function, which has been given, e.g., by Ichi-
dashed ling The physical origin of this angular behavior in . .
the low- and high-velocity limits is the enhancement of themaru [17] [see Appendix A, EqiA7)] and to write the real

o . . and imaginary parts of EQA7) separately,
effective impact parameter for an individual electron-ion col- ginary p dAT) sep y

lision with increasingd. For medium projectile velocities w w Y,
V=uy, the collective excitations in the plasma become im- G=1- WAO(Z)Di — k] An(2)
portant and thus the stopping power is higher for sndall 1Yt IKilvmv2 IV thi n=1
| ot+nog [ o—now. 1
X{ @ + Di +now——1
|kH|UthH‘f |Kylv w2 T
. w— nwc | ot+nog
X —-Di| ———| |, (49
|k|\|vthH‘/_ |Kylv V2
2

—_ F=Vm z)exp( )

g | K | Uthi ku UthH

~

> p( w’+ nzwg)

L A (z)ex ——

E |kH|UthH 2 2kfv iy

mg y I’{na)cou . (1 1) . I’lwcw> }

® COSN 55— Nwq| — SN ~5—— .
Kivin ‘7 Kivin
(50)

The notations in Eq949) and(50) are explained in Appen-
dix A.

For the friction coefficient we have to considgrgiven
FIG. 8. As Fig. 7, but here=10%. by Eg.(8) in the low-velocity limit, and thus the functiorG
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andF given by Eqgs.(49) and(50), whenw=Kk-V. Now we
have to write the Taylor expansion of Eq49) and (50) for
small w=k-V. However, the first term of Eq50) exhibits a
singular behavior in the limit oiv=k-V—0 where thek
integration diverges logarithmically for smad,. We must
therefore keep =k-V finite in that integration to avoid such

a divergence. This anomalous contribution that arises from

the first term of Eq(50) in the low-velocity limit is

S ( 2 )1/22292 \V/ gnksdkjl dM J’ﬂ'd 52®
= 5 —_— co
an ;g )\DH Uth JO oM Jo ¢

Ao(2)exd — (VZ2vi,) (cof O/ u?)]
[K*+Ea(k,u)]° ’

(51)

whereA ¢(z) =exp(—2)ly(2), andE,(k,u) =G(w=0) is

ool 2

kuv2

» > nA,(z)Di
y7

n=1

2V27y
Ea(k,u)=1+

(52

Here z=(k?7/7%)(1— u?), u=cosa=k/k, and © is the
angle betweerk andV. After u and ¢ integration(see Ap-
pendix B, Eq. (51) reads

< 2)1’222e2 Y 29 (um 2.26)]__
o\ 7] ang oo OV sing) FR
(53
with
2
_ ¢ Ao(XI p7)x dx
N e S

The functionF and thusS,, [Eq. (53)] vanishes in the limit
Bo—0 (or »—0) like
(55

The anomalous term Eq&3) and(54) therefore represent a

kmax)\ DL

arctarKmadp.) — 1+ (KmaxMp1 )2
ma

]:(T’”):(ZT”)”?

new effect arising from the presence of the magnetic field,

which is not restricted to anisotropic plasmas.

For an isotropic plasma7r&1) and for a sufficiently
weak magnetic fieldy<g; (or w.<Kmaww), EQ. (54 takes
the form

1
7

1

n ok

(56)

.7:(T,77)28X[L< (1+

whereK, andK; are modified Bessel functions of the sec-
ond kind. In the case of very strong magnetic fieid
> &7 (0r we>Kmap, ), the functionF(r, 7) reads

2

Flr,m)=W(&)=In(1+¢&)— (57)

1+¢

The physical origin of such an anomalous friction coeffi-
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0.6

FIG. 10. The ratio of the anomalous stopping power to the stop-
ping power without magnetic fields,,/S;) as a function ot/ w,
for Z2=0.1, V/v4=0.2, 7=0.1, 9=7/6 (solid line), #/3 (dotted
line), and #/2 (dashed ling

to couple strongly with long-wavelength fluctuatiofise.,
small k;) along the magnetic field. In addition, when such
fluctuations are characterized by slow variation in tifhe.,
small w=k-V), the contact time or the rate of energy ex-
change between the electrons and the fluctuations will be
further enhanced. In a plasma, such low-frequency fluctua-
tions are provided by the slow projectile ion. The above cou-
pling can therefore be an efficient mechanism of energy ex-
change between the electrons and the projectile ion. In the
limit of V—0, the frequencyw=Kk-V—0 tends to zero as
well. The contact time thus becomes infinite and the friction
coefficient diverges.

The anomalous friction coefficierfsee Eq.(53)] van-
ishes, however, when the ion moves along the magnetic field
(9=0). Then the friction coefficient is solely given by the
second term of Eq50). The contribution of this term to the
stopping power leads to the usual friction law in plasmas and
reads for arbitrary angle8

2

3

™

1
k3dkf ~
0

X[ u?cog 9+ 2(1— u?)sir? 9]

i El(kwu')
p [K*+Ea(k p)]?

(58)

1/2 22262 \Vi &

2
}‘DH Uth| Jo

1
—_—

n27]2
T

Kou?
(59

* r]2,'72
El(k,u)=n§1 An(z)exp( —~ W)[H(

andE,(k,u) as defined by Eq(52).

In Figs. 10 and 11 we compare the anomalous t&m
with the low-velocity stopping without magnetic field,
[see EQ.(19)], where S,,/S, is plotted as a function of
o./w, for 4=m/6 (solid ling), #/3 (dotted ling, and /2
(dashed ling Z=0.1, V/v»=0.2, and for two values of the
anisotropy parameter. 7=0.1(Fig. 10 and 10(Fig. 11).

We conclude that the anomalous te8y, gives an impor-

cient may be traced to the spiral motion of the electrongant contribution to the stopping, especially for strong mag-
along the magnetic field lines. These electrons naturally tendetic fields w.>w,) and for large temperature anisotropies
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(T, >T,). It should be noted that the observed enhancement 16
of stopping due td5,, for T, >T, is potentially interesting Pras
for future electron cooling experiments. We note that the -~
appearance of the anomalous tefs3), but not its size, is 124 d=np -~

independent of the cutofP). --- =2 7

VIl. SUMMARY

The purpose of this work was to investigate the stopping
power of an ion in a classical magnetized anisotropic two- S
temperature plasma. A general expression obtained for the A’
stopping power was analyzed in four particular cases: in a e
plasma without magnetic field; in a plasma with weak and I
very strong magnetic fields; and in a plasma with arbitrary 0 ) 1 6 3 10
magnetic field and for low-velocity projectile.

From the results obtained in Secs. 1lI-V, we found that wjw,
the stopping power essentially depends on the plasma tem- _
perature anisotropy. In the field-free case and for small ion FIG. 11. As Fig. 10, but here=10.
velocities, the anisotropy results in an enhancement of the
stopping power when the ion moves in the direction with lowtauschdienst for financial support.
temperature. For small projectile velocities a weak magnetic
field slightly decreases the field-free stopping power for
small 7; in the opposite casg@arge 7) the field-free stopping
power slightly increases. In the high-velocity limit the cor-  Here we describe the evaluation of the dielectric function
rection to the field-free stopping power for weak magneticin the temperature anisotropic case where the velocity distri-
fields is always negative and the stopping power is reducegution of the unperturbed distribution function is given by
by the magnetic field. In the case of strong magnetic fieldgq. (4). We next introduce the Fourier transformations of
we demonstrated an enhancement of the stopping power witf} (r v,t) with respect to variables andt, f;(k,,v). Be-
increasingd for low- and high-velocity regions compared to cause of the cylindrical symmetfaround the magnetic field

the case of an ion which moves aloBg. o directionb=B,/B,=2) of the problem, we choose
In the low-velocity limit but for arbitrary magnetic field,

we found an enhanced stopping power compared to the field-
free value, mainly due to the strong coupling between the
spiral motion of the electrons and the long-wavelength, low-
frequency fluctuations excited by the projectile ion. ThisThen the Vlasov Eq(2) for the distribution function be-
anomalous stopping power increases with the argide- comes
tween the ion velocityy and the magnetic field,) and
depends strongly on the temperature anisotrogyl, /T, 3 i
as seen in Figs. 10 and 11. Although the nature of the —f1(K,0,V) + — (k- v—w—i0)f,(k,w,V)
anomalous stopping power is only conditioned by the exter- Yy W
nal magnetic field, the temperature anisotropy of the plasma ie of
can intensify this effect whef, >T, (see Fig. 11 =— (p(k,w)(k—o), (A2)

This emphasizes the importance of the special role of Mawc v
fluctuations with smalk, and smalle (small projectile ve-
locity V) and as another significant contribution to the en-where ¢(k,w) is the Fourier transformation af(r,t). The
ergy exchange processes arising from the collective modes @fositive infinitesimal+i0 in Eq. (A2) serves to assure the
plasma. Potentially, the electron plasma waves and the ioadiabatic turning on of the disturbance and guarantees
acoustic waves in a magnetized plasma might provide a sighereby the causality of the response. The solution of Eq.
nificant energy-exchange mechanism between projectile iopa2) has the form
and plasma particles. This fact makes it necessary to consider
the influence of plasma collective modes on the anomalous .

: - : ; ie o of

stopping process. This problem will be treated in a SUbse'fl(k,w,v):— —<P(k,w)f dgz(k_o)
quent work. Mw, % d

APPENDIX A

V=uv, C0SoX+v, sincy+uv,z (A1)

(T:(Tz

i (o2
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2m +oo . N
S(k (l)) 1- —2 deULJ daf exq_x(t)]:exq_tzcoga) 2 An(ﬁ)ex%ln::;t 2)
n=-o thil
(A9)
afo)

dfo
XdUHJ d(Tz( kH +k COS(P 0'2) 0"UL

Substituting Eq.(A9) into expression(6) and integrating
over the variablé leads to Eq(A7).

i o
XeX[{—f 2d0'1[kHv||—w—i0+klvl
We Jo

APPENDIX B
We now give a more detail derivation of the anomalous
xcogp—oy)]], (A4)  termS, [Eq. (53)]. We start with the expression
i - - 1d N2 ()
where k,=k, cose, ky=k, sing. After integration by the K o A :f _'“q) K, p)ex __2_’
variableso;, o5, ando, and using the expressi¢a0] Qlk.e.A) 0 M (wkoe 2
(B1)

+ o

expl—izsing)= :2_ Jn(2)exp(—ind), (A5)  [see Eq(51)], where¢(u,¢)=cos0®, A\=V/vy,, and

whereJ, is the Bessel function of theth order, we obtain D,k @)= /;()(z)—cosz®2 (B2)

the expressiofi17] [k*+Ea(k,u)]
m2e2 17 +oo nw, af, For \—0 a leading-term approximation of E(B1) leads to

s(k,(u)=1— 2 ULdULJ U( ¢ -
n=—o v, Jdu, N
K,o,A\)=®(0k,¢)In————=+0(1), (B3
sol Rk, foy N QAke M)=@(Ok )i = +0(D), - (B3)
Yov, | nwet+ kv —w—i0" (A6) _ .
wherey is Euler’s constant,¢(0,¢)| = sind|cosg|,
Substituting Eq(4) for the unperturbed distribution func- 21,2\ sir? 2

tion f into Eq. (A6) we finally obtain DOk, @)= Ao(K™7/7")simd cos” ¢ (B4)

[k?+E,(k,0)]? ’

+ o

k 1+ —— ! 1+ > 1+T nwc)
8( w) kz)\D” n=—ow TL w nwc and
_ 1 -
x| W anc)—l An(,B)], (A7) Ex(k,0)=1+2 ;—1);1 An(K27l7%).  (BD)
1Y thi -
where 8=k?v2 /w?=k?a2, A(2)=exp(-2)I(2), I,(2) is  Using the relatior]17,20
the modified Bessel funct|on of theth order, andW(z) is o
the plasma dispersion functig8]. _
To show the identity of the two forni€&gs.(6) and(A7)] _Z An(2)=1, (B6)
of the dielectric function we will use the expansion in modi-
fied Bessel functionp20] the functionE,(k,0) finally takes the form
S ; 1 24,2
expzcost)= >, Iy(2)exping). (A8) Ea(k0)=—+| 1=~ Ao(K?7/ 7). (B7)
n:—oc

This allows us to rewrite eXp-X(t)] with X(t) from Eq.(7)  Substituting Eqs(B3), (B4), and(B7) into Eq. (51) and in-
as tegrating overp, we finally come to expressiofd3).
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